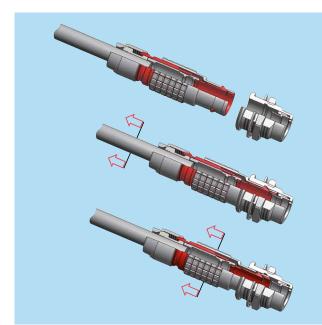
HIGH PRESSURE CONNECTORS V SERIES

Precision modular connectors to suit your application


Since its creation in Switzerland in 1946 the LEMO Group has been recognized as a global leader of circular Push-Pull connectors and connector solutions. Today LEMO and its affiliated companies, REDEL and COELVER, are active in more than 80 countries with the help of over 40 subsidiaries and distributors.

Over 75000 connectors

The modular design of the LEMO range provides over 75000 connectors from miniature Ø 3 mm to Ø 50 mm, capable of handling cable diameters up to 30 mm and for up to 114 contacts. This vast portfolio enables you to select the ideal connector configuration to suit almost any specific requirement in most markets, including medical devices, test and measurement instruments, machinery, audio video broadcast, telecommunications and military.

LEMO's Push-Pull Self-Latching Connection System (not shown in this catalogue)

This self-latching system is renowned worldwide for its easy and quick mating and unmating features. It provides absolute security against vibration, shock or pull on the cable, and facilitates operation in a very limited space.

The LEMO self-latching system allows the connector to be mated by simply pushing the plug axially into the socket.

Once firmly latched, connection cannot be broken by pulling on the cable or any other component part other than the outer release sleeve.

When required, the connector is disengaged by a single axial pull on the outer release sleeve. This first disengages the latches and then withdraws the plug from the socket.

UL Recognition 🔁

LEMO connectors are recognized by the Underwriters Laboratories (UL). The approval of the complete system (LEMO connector, cable and your equipment) will be easier because LEMO connectors are recognized.

CE marking C€

CE marking $\zeta \in \zeta$ means that the appliance or equipment bearing it complies with the protection requirements of one or several European safety directives. CE marking $\zeta \in \zeta$ applies to complete products or equipment, but not to electromechanical components, such as connectors.

RoHS

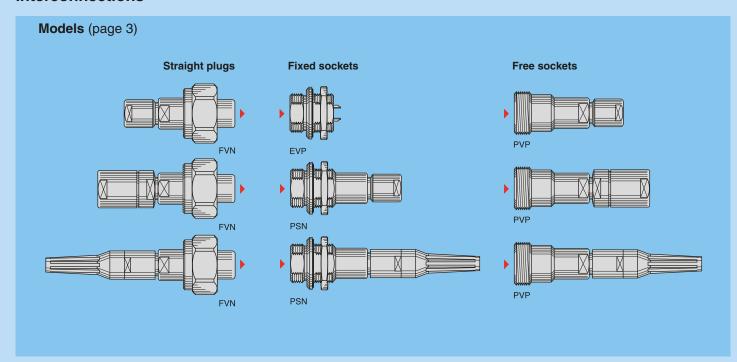
LEMO connector specifications conforms the requirements of the RoHS directive (2011/65/EU) of the European Parliament and the latest amendments. This directive specifies the restrictions of the use of hazardous substances in electrical and electronic equipment marketed in Europe.

Product safety notice & disclaimers

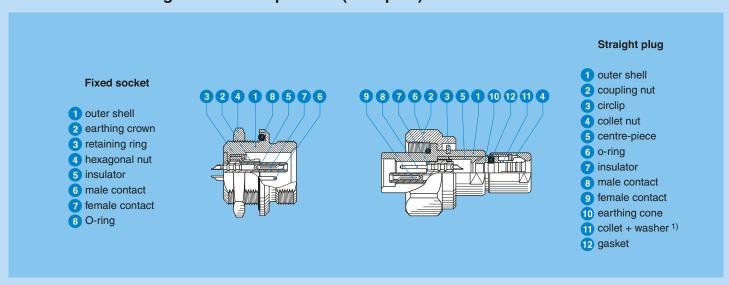
Please read and follow all instructions specified on the last page or on our <u>website</u> carefully and consult all relevent national and international safety regulations for your application. Improper handling, cable assembly, or wrong use of connectors can result in hazardous situations.

LEMO products and services are provided "as is." LEMO makes no warranties or representations with regard to LEMO product & services or use of them, express, implied or statutory, including for accuracy, completeness, or security.

In no event shall LEMO be liable for any direct, indirect, punitive, incidental, special consequential damages, to property or life, whatsoever arising out of or connected with the use or misuse of LEMO's products.

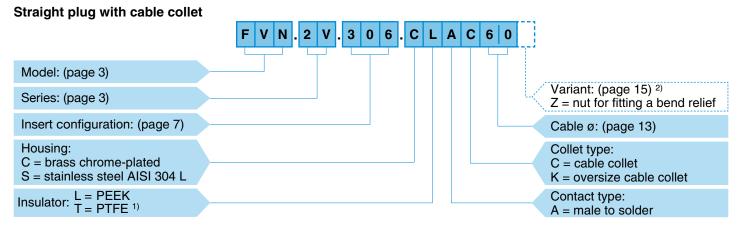


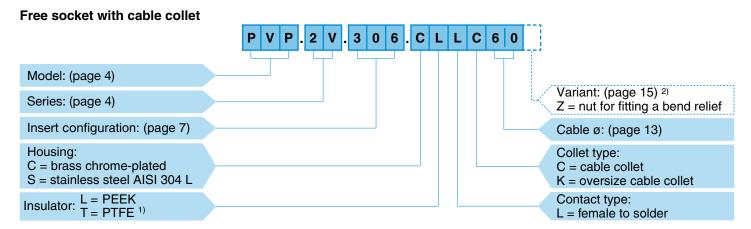
V Series

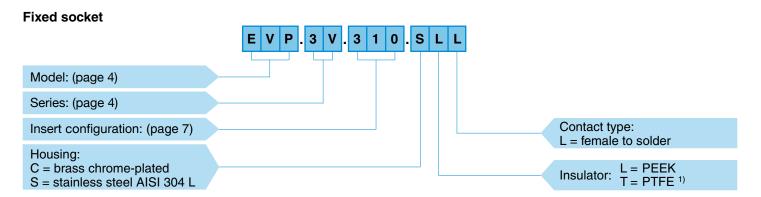

V series connectors have been developed for utilisation where protection must be guaranteed under high pressures of liquids. The basic elements, insulators, contacts and clamping system are from the S and E series. The push-pull latching system has been replaced by a screw coupling system with watertightness maintained by compression of an O-ring in FPM (Viton®) according to the triangular shaped cavity principle. There are multiple application possibilities, from nuclear physics to the petroleum industry. After cable assembly the rear part must be covered with an adhesive heatshrink boot in order to ensure watertightness on the cable side. V series connectors provide the following main features:

- unipole and multipole type
 coaxial, triaxial or hybrid type available upon request
- polarisation by stepped insert (half moon)
 360° screening for full EMC shielding
- rugged housing for extreme working conditions.

Interconnections


Part Section Showing Internal Components (multipole)


Note: 1) depending on models.


Part Number Example

FVN.2V.306.CLAC60 = straight plug with cable collet, 2V series, multipole type with 6 contacts, outer shell in chrome-plated brass, PEEK insulator, male solder contacts, C type collet for 6 mm diameter cable.

PVP.2V.306.CLLC60 = free socket with cable collet, 2V series, multipole type with 6 contacts, outer shell in chrome-plated brass, PEEK insulator, female solder contacts, C type collet for 6 mm diameter cable.

EVP.3V.310.SLL = fixed socket, nut fixing, 3V series, multipole type with 10 contacts, outer shell in stainless steel, PEEK insulator, female solder contacts.

Note: 1) PTFE insulator for unipole type only.

²) The «Variant» position in the reference is used to specify either the presence of a collet nut for fitting the bend relief. For models with collet nut for fitting the bend relief, a «Z» should be indicated and a bend relief can be ordered separately. An order for a connector with bend relief should thus include two part numbers.

Models

Technical Characteristics

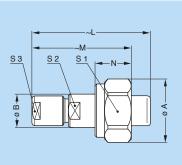
Mechanical and Climatical

Characteristics	Value	Standard
Endurance	> 1000 cycles	IEC 60512-5 test 9a
Temperature range 3)	-20	° C, +200° C
Salt spray corrosion test ²⁾	> 1000 h	IEC 60512-6 test 11f
Protection index (mated)	> IP 68	IEC 60529
Resistance to hydrostatic pressure (mated)	~ 30 bars ¹⁾	IEC 60512-7 test 14d
Climatical category	20/200/21	IEC 60068-1

Electrical

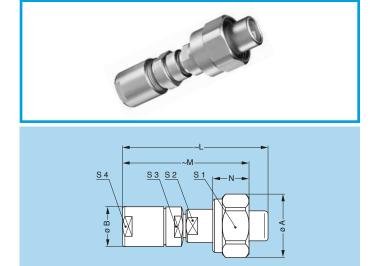
Characteri	stics	Value	Standard
Shielding efficiency	at 10 MHz	> 95 dB	IEC 60169-1-3
	at 1 GHz	> 80 dB	IEC 60169-1-3

- Note:


 1) in order to perform correctly and withstand the pressure, cable assembly shall be made according to instruction we recommand. See page 18.

 2) for chrome plated product («C» material code).

 3) maximum temperature valid for short periods of use.

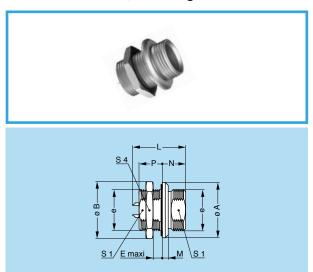

FVN Straight plug with cable collet

Refe	rence	Dimensions (mm)										
Model	Series	Α	В	L	М	N	S1	S2	S3			
FVN	0V	17.2	10	34.0	29	13.5	16	9	8			
FVN	1V	19.3	12	43.0	35	14.0	18	10	9			
FVN	2V	23.5	3.5 16 52.5 42 15.5		15.5	22	14	12				
FVN	3V	27.8	18	61.0	47	16.5	26	16	15			
FVN	4V	34.3	24	71.0	57	17.5	32	22	19			
FVN	5V	50.0	38	94.0	78	21.0	47	34	30			

FVN Straight plug with oversize cable collet 1)

Refe	rence		Dimensions (mm)									
Model	Series	Α	A B L M N S1 S2 S3 S							S4		
FVN	1V	19.3	14.5	55	47	14.0	18	10	12	12		
FVN	2V	23.5	17.0	65	55	15.5	22	14	15	15		
FVN	3V	27.8	22.0	80	66	16.5	26	16	19	19		
FVN	4V	34.3	36.0	105	91	17.5	32	22	30	32		

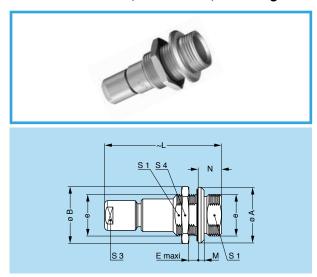
Note: $^{1)}$ correspond to K type of collet, the fitting of oversize collets onto this model allows them to be fitted to the cables that can be accommodated by the next housing size up (see page 13).


FVN Straight plug, cable collet and nut for fitting a bend relief 1)

Refe	rence		Dimensions (mm)									
Model	Series	Α	A B L M N S1 S2									
FVN	0V	17.2	10	34	29	13.5	16	9	7			
FVN	1V	1V 19.3 12 43 35		14.0	18	10	9					
FVN	2V	23.5	16	52	42	15.5	22	14	12			
FVN	3V	27.8	18	60	47	16.5	26	16	15			
FVN	4V	34.3 24 71		57	17.5	32	22	19				

Note: $^{1)}$ to order, add a "Z" at the end of the reference. The bend relief must be ordered separately (see pages 141 and 142 of the unipole/multipole catalog).

EVP Fixed socket, nut fixing



	Refer	ence		Dimensions (mm)										
N	Model	Series	Α	В	е	Е	L	L M		Р	S1	S4		
	EVP	0V	19	19.2	M14x1.0	5.5	19.0	2.0	8.0	8.0	12.5	17		
	EVP	1V	21	21.5	M16x1.0	10.5	26.0	2.0	8.0	13.5	14.5	19		
	EVP	2V	26	27.0	M20x1.0	11.0	29.0	2.5	9.0	15.0	18.5	24		
	EVP	3V	31	34.0	M24x1.0	15.0	34.5	3.0	9.5	20.0	22.5	30		
	EVP	4V	38	40.5	M30x1.0	14.5	35.0	3.5	10.0	21.5	28.5	36		
	EVP	5V	55	54.0	M45x1.5	15.5	44.5	4.5	12.5	24.5	42.5	-		

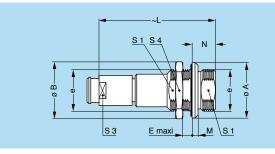
Panel cut-out (page 15)

Note: the 5V series is delivered with a round nut.

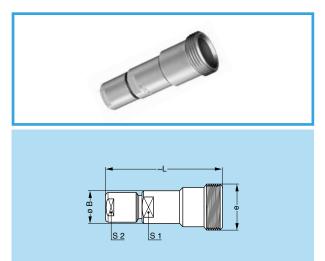
PSN Fixed socket, cable collet, nut fixing

Refe	rence		Dimensions (mm)										
Model	Series	Α	В	е	Е	LM		N	S1	S3	S4		
PSN	0V	19	19.2	M14x1.0	5.5	34.0	2.0	8.0	12.5	8	17		
PSN	1V	21	21.5	M16x1.0	10.5	46.0	2.0	8.0	14.5	9	19		
PSN	2V	26	27.0	M20x1.0	11.0	54.0	2.5	9.0	18.5	12	24		
PSN	3V	31	34.0	M24x1.0	15.0	65.0	3.0	9.5	22.5	15	30		
PSN	4V	38	40.5	M30x1.0	14.5	75.5	3.5	10.0	28.5	19	36		
PSN	5V	56	54.0	M45x1.5	15.5	95.0	4.5	12.5	42.5	30	-		

Panel cut-out (page 15)

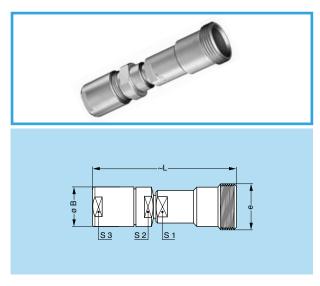

Note: the 5V series is delivered with a round nut.

PSN Fixed socket, cable collet, nut fixing and nut for fitting a bend relief 1)



Refe	rence		Dimensions (mm)										
Model	Series	Α	Ве		Е	Г	М	N	S1	S3	S4		
PSN	0V	19	19.2	M14x1.0	5.5	34.0	2.0	8.0	12.5	7	17		
PSN	1V	21	21.5	M16x1.0	10.5	46.0	2.0	8.0	14.5	9	19		
PSN	2V	26	27.0	M20x1.0	11.0	54.0	2.5	9.0	18.5	12	24		
PSN	3V	31	34.0	M24x1.0	15.0	64.0	3.0	9.5	22.5	15	30		
PSN	4V	38	40.5	M30x1.0	14.5	75.5	3.5	10.0	28.5	19	36		

Panel cut-out (page 15)

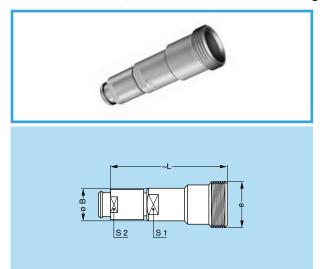

Note: $^{\rm 1)}$ to order, add a «Z» at the end of the reference. The bend relief must be ordered separately (see pages 141 and 142 of the unipole/multipole catalog).

PVP Free socket with cable collet

Refe	rence	Dimensions (mm)									
Model	Series	В	е	L	S1	S2					
PVP	0V	10	M14x1.0	34.0	9	8					
PVP	1V	12	M16x1.0	45.0	10	9					
PVP	2V	16	M20x1.0	54.0	14	12					
PVP	3V	19	M24x1.0	65.0	16	15					
PVP	4V	24	M30x1.0	75.5	22	19					
PVP	5V	38	M45x1.5	95.0	34	30					

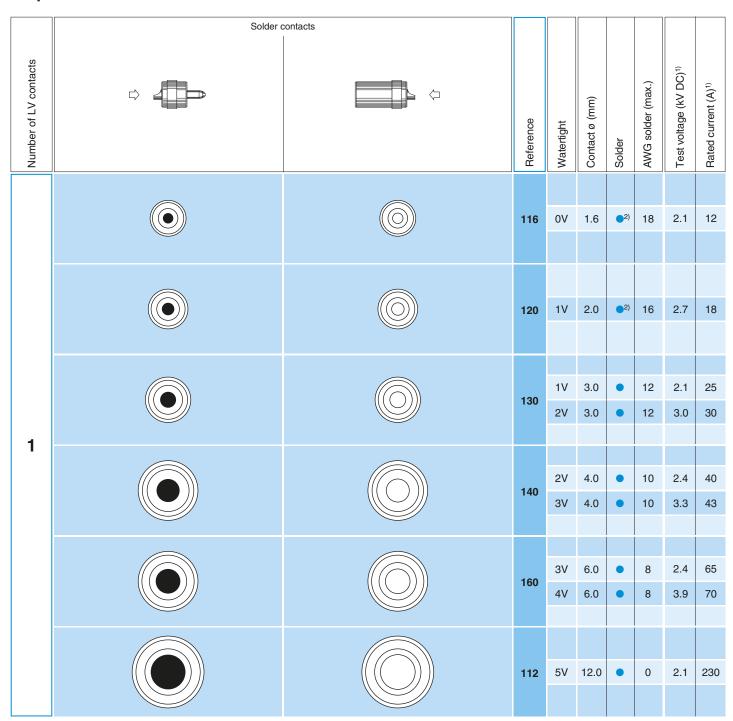
PVP Free socket with oversize cable collet 1)

Refe	rence		Dime	ension	s (mm	1)	
Model	Series	В	е	L	S1	S2	S3
PVP	1V	14.5	M16x1.0	58	10	12	12
PVP	2V	17.0	M20x1.0	67	14	15	15
PVP	3V	22.0	M24x1.0	84	16	19	19
PVP	4V	36.0	M30x1.0	109	22	30	32


Note: $^{1)}$ correspond to K type of collet, the fitting of oversize collets onto this model allows them to be fitted to the cables that can be accommodated by the next housing size up (see page 13).

5

PVP Free socket, cable collet and nut for fitting a bend relief 1)


	Refe	rence		Dimens	ions (r	nm)	
N	/lodel	Series	В	е	L	S1	S2
F	PVP	0V	10	M14x1.0	34.0	9	7
F	PVP	1V	12	M16x1.0	46.0	10	9
F	PVP	2V	16	M20x1.0	54.0	14	12
F	PVP	3V	19	M24x1.0	64.0	16	15
F	PVP	4V	24	M30x1.0	75.5	22	19

Note: $^{1)}$ to order, add a «Z» at the end of the reference. The bend relief must be ordered separately (see pages 141 and 142 of the unipole/multipole catalog).

Unipole

Note: 1) see calculation method, caution and suggested standard. 2) also available with inversed contacts: plug = female, socket = male.

• First choice alternative O Special order alternative

Coaxial, Triaxial, Hybrid

A wide choice of those types is available, please consult us.

	Solder o	contacts					Cor	ntact pe			AWG					
ontacts											Cri	mp	DC) ^{1) 2)})1)		
f LV o	Crimp o	ontacts	Reference		(mm)			ght)	(w	ах.)			ge (kV	rent (A		
Number of LV contacts	\Rightarrow			¢		Watertight	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	max.	Test voltage (kV DC) ^{1) 2)}	Rated current (A) ¹⁾
2				0V	0.9	•	•	•	•	22	32	20	1.6	10 ³⁾		
				1V	1.3	•	•	•	•	20	26	18	1.8	15 ³⁾		
	1	1	302	2V	1.6	•	0	0	0	18	22	14	2.4	204)		
	2	2	00Z	3V	2.0	•	_	0	_	16	-	-	4.2	23		
				4V	4.0	•	_	0	-	10	-	-	3.0	35		
				5V	6.0	•	_	-	-	8	-	-	5.2	50		
3				0V	0.7	•	0	•	•	26	32	22	1.5	73)		
				1V	0.9	•	0	•	•	22	32	20	1.8	10 ³⁾		
			303	2V	1.3	•	0	•	0	20	26	18	2.1	15 ⁴⁾		
	30		9 3		3V	2.0	•	_	0	-	16	-	-	2.1	20	
				4V	3.0	•	_	0	_	12	-	-	3.0	25		
				5V	1x6.0 2x4.0	•	_	_	-	8 10	-	-	5.2	50 35		
4				0V	0.7	•	•	•	•	26	32	22	1.5	7 3)		
				1V	0.9	•	•	•	•	22	32	20	1.8	10 ³⁾		
			304	2V	1.3	•	0	•	•	20	26	18	2.4	15 ⁴⁾		
				3V	2.0	•	_	0	-	16	-	-	2.1	18		
				4V	3.0	•	_	0	_	12	-	-	3.0	22		
				5V	4.0	•	_	_	_	10	-	-	5.2	35		
5	_			1V	2x0.9 3x0.7	•	0	•	•	22 26	32	20 22	2.1	10 ³⁾ 7 ³⁾		
	3 6 ²		30		2V	1.3	•	0	•	•	20	26	18	2.1	13 ⁴⁾	
						305	3V	2x2.0 3x1.3	•	_	0	-	16 20	-	-	2.1
	5	9 9 4		4V	2x3.0 3x2.0	•	_	0	-	12 16	-	-	3.0	22 16		
			5V	2x4.0 3x3.0	•	_	_	-	10 12	-	-	4.2	35 25			

Note: 1) see calculation method, caution and suggested standard. 2) lowest measured value; contact to contact or contact to shell.
3) rated current = 6A for socket with elbow (90°) contacts for printed circuit. 4) rated current = 12A for socket with elbow (90°) contacts for printed circuit.

• First choice alternative O Special order alternative

9

Multipole

	Solder o	contacts					Cor	ntact pe			AWG			
/ contacts	Crimp o	ontacts								Cri	mp	(kV DC) ^{1),2)}	t (A) ¹⁾	
Number of LV contacts			Reference	Watertight	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	max.	Test voltage (kV DC) ^{11,2)} Rated current (A) ¹⁾	Rated current (A) ¹⁾
6				1V	0.7	•	0	•	•	26	32	22	1.7	73)
	3 • 2	20 3		2V	1.3	•	4)	•	•	20	26	18	2.1	12
	$\begin{pmatrix} \bullet & \bullet & 1 \\ & & - & 1 \\ 4 & \bigcirc & \bigcirc & \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ \hline & & - & - & - \\ \hline & & & 4 \end{pmatrix}$	306	3V	1.3	•	-	•	_	20	-	-	3.0	14
	50 6	6 ● 5		4V	2.0	•	-	0	-	16	-	-	3.0	16
				5V	3.0	•	-	_	-	12	-	-	4.2	25
7														
	1 3 0 2	200 4		2V	3x1.3 4x0.9	•	0	•	•	20 22	26 32	18 20	1.2	12 ³⁾ 9 ³⁾
	$\left(\begin{pmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet &$		307	3V	1.3	•	-	•	-	20	-	-	1.5	12
	60 7	7 6		4V	3x2.0 4x1.3	•	-	0	-	16 20	-	-	3.0	16 13
8				2V	0.9	•	0			22	32	20	1.2	9 ³⁾
	3 ● 2	² O O ³		3V	1.3		_			20	_	_	1.5	10
	$\begin{pmatrix} 4 & \bullet & \bullet & 1 \\ \hline \bullet & - & - & - & \bullet \\ \hline \vdots & \vdots & \ddots & \vdots \\ 5 & \bullet & \bullet & \bullet \end{pmatrix}$	$\begin{pmatrix} 1 \bigcirc & - \bigcirc & 4 \\ \bullet & \bullet & \bullet \end{pmatrix}$	308	4V	1.3		_		_	20	_	_	3.9	13
	6 7	7 6		5V	3.0		_	_	_	12	_	_	3.0	22
				JV	3.0					12			5.0	22
9	4 🔊	30.4												
	$\begin{pmatrix} 5 & \bullet & \bullet & 2 \\ \bullet & - & - & \bullet & 1 \\ \bullet & \bigcirc & - & - & \bigcirc & 1 \end{pmatrix}$		309	4V	1.3	•	_	0	_	20	_	_	3.0	12
		9 9 7												
10	● 3 ●2	2030												0
	$\begin{pmatrix} 4 & \bullet_9 & \bullet_1 \\ \hline 5 & 10 & -1 & -1 \end{pmatrix}$		310	2V	0.9	•			•	22	32	20	1.2	73)
	7 8	8 07 06		3V	1.3	•	_	•		20	_	_	1.5	9
10	403			45.4									0.0	
	$\begin{pmatrix} \begin{pmatrix} \frac{1}{6} & - & - & - & \frac{1}{6} \\ \frac{1}{6} & - & - & \frac{1}{6} \end{pmatrix} \end{pmatrix}$	310	4V	1.3		_		_	20	-	-	3.0	11	
	70 ₈ 0 0 10/	10 9 8 7		5V	2.0	•	_	_	_	16	_	-	3.0	18

Note: 1) see calculation method, caution and suggested standard. 2) lowest measured value; contact to contact or contact to shell. 3) rated current = 6A for socket with elbow (90°) contacts for printed circuit. 4) only for FFL model.

Special order alternative

	Solder c	ontacts					Cor	ntact pe			AWG			
Number of LV contacts	Crimp c	ontacts			mm)	Jht)		(/	Crimp		mp	Test voltage (kV DC) ¹⁾²⁾	ent (A) ¹⁾	
Number of	\Rightarrow		Reference	Watertight	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	max.	Test voltag	Rated current (A) ¹⁾
12	20-0	10-02												
			312	3V	0.9	•	_	•	•	22	-	-	2.1	8
12		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	312	4V	1.3	•	_		_	20	_	_	3.0	9
	10 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 0 0 7												
12		0°0°0												
			312	5V	2.0	•	-	_	_	16	-	-	3.0	18
13			313	3V	0.9	•	_	•	0	22	_	_	2.1	8
	130-012	122 13												
14	3-4-91	10-0-03												
	(7 • • • • 4 (110 - 0 - 0 - 0 8) (140 - 0 - 0 12)	(40-0-7) (80-0-1) (120-0-1)	314	3V	0.9	•	_	•	•	22	_	_	2.1	7
14	(20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
			314	4V	1.3	•	_	0	_	20	-	-	3.0	9
14		0000												
			314	5V	2X3.0 12X2.0	•	_	_		12 16	_	-	2.4	20 15

Note: 1) see calculation method, caution and suggested standard. 2) lowest measured value; contact to contact to shell.

First choice alternative ○ Special

O Special order alternative

	Solder o	contacts					Cor ty	ntact pe			AWG			
V contacts	Crimp o	ontacts			(m			(;			Cri	mp	(kV DC) ^{1) 2)}	t (A) ¹⁾
Number of LV contacts			Reference	Watertight	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	max.	Test voltage (kV DC) ^{1) 2)}	Rated current (A) ¹⁾
16	(A) a (A)	(in the second s												_
			316	3V 4V	0.9		_		_	22	_	_	3.0	7
	16 13	13 16			0.0								0.0	
16		200												
			316	5V	2.0	•	_	_	_	16	-	-	2.4	15
	10 0 0 0													
18														
.0		0-0-0-0 0-0-0-0-0 5-0-0-0-14	318	3V	0.9	•	_	•	0	22	-	-	1.5	6
		15 18		4V	0.9	•	_	0	_	22	-	_	3.0	7
10														
18	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0000	318	5V	2x3.0 16x1.6		_	_	_	12	_	_	2.4	18 11
			310	34	16x1.6					18			2.7	11
20														
			320	4V	0.9	•	_	0	_	22	_	_	3.0	7
	17 0-0 16 20 18	18 20 17												
20														
20			320	5V	1.6	•	_	_	_	18	_	_	2.4	11
		19 19 19	520											
20														
22	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	30-006 20-006 20-0001	322	4V	0.9	•	_	0	_	22	_	_	3.0	7
			UZZ	. •	0.0								0.0	

Note: 1) see calculation method, caution and suggested standard. 2) lowest measured value; contact to contact to shell.

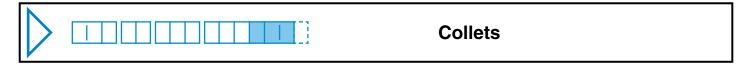
• First choice alternative Special order alternative

	Solder o	contacts					Cor	ntact pe			AWG			
Number of LV contacts	Crima o	the state of			(6						Cri	mp	Test voltage (kV DC) ¹⁾²⁾	(A) ¹⁾
of LV	Crimp c		ce	ţ	mm) ø			raight)	(moq	max.)			tage (P	urrent
Numbe	\$	+	Reference	Watertight	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	max.	Test vol	Rated current (A) ¹⁾
22		00000000000000000000000000000000000000												
			322	5V	2x3.0 20x1.6	•	-	-	-	12 18	-	-	2.4	16 9
	V:0,012													
24	3-10	0-0-0-3		0.1	0.0					00			0.0	_
		$\begin{pmatrix} \begin{pmatrix} 0 & -0 & -0 & 0 \\ 0 & -0 & -0 & 0 \\ 0 & -0 & -$	324	4V 5V	0.9		_	_	_	22 18	_	_	3.0	7 9
	21 0-0-0 18/	18 2 21		34	1.0			_		10	_	_	5.9	9
30														
	((0-0°) (0-0-0-0°) (0-0-0-0-0°)	330	5V	1.3	•	-	_	_	20	-	-	2.4	8
	30-03													
36	()	00000												
	(0000000) (0000000) (000000)		336	5V	1.3	•	-	-	-	20	-	-	2.4	7
	3/													
40		(000000)												
	(00000000 00000000 00000000	340	5V	1.3	•	-	-	-	20	-	-	1.8	7
44														
	00000000000000000000000000000000000000	0000000	344	5V	1.3	•	_	_	-	20	_	_	1.8	6
	(COCCOC)	(10 mm s)												
48		2000												
	00000000	348		5V	1.3	•	-	-	-	20	-	-	1.8	6
	\$000000°													

Note: 1) see calculation method, caution and suggested standard. 2) lowest measured value; contact to contact to shell.

• First choice alternative Special order alternative

Cable ø


min.

6.1

14.1

max.

6.5

Reference

Type

С

Code

65

15

15.3

C and K type collets

0V, 1V, 2V and 3V series

	Refe	rence	Colle	et ø	Cal	ole ø
	Туре	Code	ø A	ø B	max.	min.
OV	С	10 ¹⁾	1.6	_	1.2	1.0
0V	С	15 ¹⁾	1.6	-	1.5	1.3
	С	20 ¹⁾	2.1	-	2.0	1.6
	С	25	3.1	-	2.5	2.1
	С	30	3.1	-	3.0	2.6
	С	35	4.2	4.2	3.5	3.1
	С	40	4.2	4.2	4.0	3.6
	С	45	5.2	5.2	4.5	4.1
	K	50	5.2	5.2	5.0	4.6
	K	55	6.2	6.2	5.5	5.1
	K	60	6.2	6.2	6.0	5.6
	K	65	7.2	6.7	6.5	6.1
1V	С	35	4.2	_	3.5	3.1
IV	С	40	4.2	-	4.0	3.6
	С	45	5.2	_	4.5	4.1
	С	50	5.2	_	5.0	4.6
	С	55	6.2	6.2	5.5	5.1
	С	60	6.2	6.2	6.0	5.6
	С	65	7.2	6.7	6.5	6.1
	K	70	7.2	_	7.0	6.6
	K	K 75 8.2		8.2	7.5	7.1
	K	80	8.2	8.2	8.0	7.6
	K	85	9.2	8.6	8.5	8.1

20	С	70	7.2	-	7.0	6.6
	С	75	8.2	8.2	7.5	7.1
	С	80	8.2	8.2	8.0	7.6
	С	85	9.2	8.6	8.5	8.1
	K	90	9.2	-	9.0	8.6
	K	95	10.2	10.2	9.5	9.1
	K	10	10.2	10.2	10.0	9.6
	K	11	11.2	10.6	10.5	10.1
21/	С	65	7.2	-	6.5	6.1
3V	С	70	7.2	-	7.0	6.6
	С	75	8.2	-	7.5	7.1
	С	80	8.2	-	8.0	7.6
	С	85	9.2	_	8.5	8.1
	С	90	9.2	-	9.0	8.6
	С	95	10.2	10.2	9.5	9.1
	С	10	10.2	10.2	10.0	9.6
	С	11	11.2	10.6	10.5	10.1
	K	11	12.3	-	12.0	10.6
	K	12	13.8	13.8	12.8	12.1
K		13	13.8	13.8	13.5	12.9
	K	14	15.3	15.3	14.0	13.6

Collet ø

øΑ

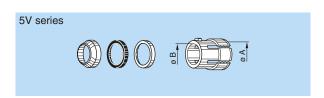
7.2

øΒ

Note: All dimensions are in millimetres.

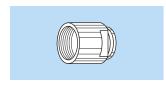
1) the inner diameter of the smallest bend relief available is 2.5 mm (in TPU) / 1.7 mm (in silicone).

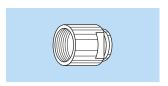
4V



C and K type collets

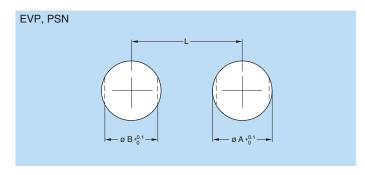
Refe	rence	Colle	et ø	Cal	ole ø
Туре	Code	ø A	ø B	max.	min.
С	50	6.3	_	5.0	4.8
С	55	6.3	-	5.5	5.1
С	60	6.3	-	6.0	5.6
С	65	7.3	-	6.5	6.1
С	70	7.3	-	7.0	6.6
С	75	8.3	-	7.5	7.1
С	80	8.3	-	8.0	7.6
С	85	9.3	-	8.5	8.1
С	90	9.3	-	9.0	8.6
С	95	10.8	-	9.5	9.1
С	10	10.8	-	10.5	9.6
С	11	12.3	-	12.0	10.6
С	12	13.8	13.8	12.8	12.1
С	13	13.8	13.8	13.5	12.9
С	14	15.3	15.3	14.0	13.6
С	15	15.3	15.3	15.0	14.1
K	16	17.8	-	16.5	15.6
K	17	17.8	-	17.5	16.6
K	18	19.8	-	18.5	17.6
K	19	19.8	-	19.5	18.6
K	20	21.8	-	20.5	19.6
K	21	21.8	-	21.5	20.6
K	22	23.8	23.8	22.5	21.6
K	23	23.8	23.8	23.5	22.6


Note: all dimensions are in millimetres.


Reference Collet Ø Cable Ø Type Code Ø A Ø B max. min. 5V C 14 15.8 — 14.5 13.6 C 15 15.8 — 15.5 14.6 C 16 17.8 — 16.5 15.6 C 17 17.8 — 17.5 16.6 C 18 19.8 — 18.5 17.6 C 19 19.8 — 19.5 18.6 C 20 21.8 — 20.5 19.6 C 21 21.8 — 21.5 20.6 C 22 23.8 23.8 23.5 22.6 C 23 23.8 23.8 23.5 22.6						1					
C 14 15.8 - 14.5 13.6 C 15 15.8 - 15.5 14.6 C 16 17.8 - 16.5 15.6 C 17 17.8 - 17.5 16.6 C 18 19.8 - 18.5 17.6 C 19 19.8 - 19.5 18.6 C 20 21.8 - 20.5 19.6 C 21 21.8 - 21.5 20.6 C 22 23.8 23.8 22.5 21.6		Refe	rence	Colle	et ø	Cal	ole ø				
C 15 15.8 - 15.5 14.6 C 16 17.8 - 16.5 15.6 C 17 17.8 - 17.5 16.6 C 18 19.8 - 18.5 17.6 C 19 19.8 - 19.5 18.6 C 20 21.8 - 20.5 19.6 C 21 21.8 - 21.5 20.6 C 22 23.8 23.8 22.5 21.6		Туре	Code	ø A	ø B	max.	min.				
C 15 15.8 - 15.5 14.6 C 16 17.8 - 16.5 15.6 C 17 17.8 - 17.5 16.6 C 18 19.8 - 18.5 17.6 C 19 19.8 - 19.5 18.6 C 20 21.8 - 20.5 19.6 C 21 21.8 - 21.5 20.6 C 22 23.8 23.8 22.5 21.6	5 \/	С	14	15.8	-	14.5	13.6				
C 17 17.8 - 17.5 16.6 C 18 19.8 - 18.5 17.6 C 19 19.8 - 19.5 18.6 C 20 21.8 - 20.5 19.6 C 21 21.8 - 21.5 20.6 C 22 23.8 23.8 22.5 21.6	5 V	С	15	15.8	-	15.5	14.6				
C 18 19.8 - 18.5 17.6 C 19 19.8 - 19.5 18.6 C 20 21.8 - 20.5 19.6 C 21 21.8 - 21.5 20.6 C 22 23.8 23.8 22.5 21.6		С	16	17.8	-	16.5	15.6				
C 19 19.8 - 19.5 18.6 C 20 21.8 - 20.5 19.6 C 21 21.8 - 21.5 20.6 C 22 23.8 23.8 22.5 21.6		С	17	17.8	_	17.5	16.6				
C 20 21.8 - 20.5 19.6 C 21 21.8 - 21.5 20.6 C 22 23.8 23.8 22.5 21.6		С	18	19.8	-	18.5	17.6				
C 21 21.8 - 21.5 20.6 C 22 23.8 23.8 22.5 21.6		С	19	19.8	_	19.5	18.6				
C 22 23.8 23.8 22.5 21.6		С	20	21.8	-	20.5	19.6				
		С	21	21.8	_	21.5	20.6				
C 23 23.8 23.8 23.5 22.6		С	22	23.8	23.8	22.5	21.6				
		С	23	23.8	23.8	23.5	22.6				

Bend relief for models with collet

	Ref.	Collet					
	nei.	Туре	Code				
OV	Z	С	35 to 45				
OV	2	K	50				
41/	7	С	35 to 65				
1V	Z	K	70 to 85				
21/	7	С	65 to 85				
2V	Z	K	90 to 10				



	Ref.	Collet						
	Hei.	Туре	Code					
21/	7	С	65 to 10					
3V	Z	K	11 to 15					
4V	z	С	65 to 15					

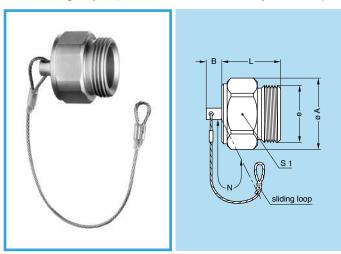
Note: The bend relief must be ordered separately (see pages 141 and 142 of the unipole/multipole catalog). All dimensions are in millimetres.

Panel cut-outs

Panel Cut-outs

Series	Dime	nsions	(mm)
Selles	Α	В	L
0V	14.1	12.6	19.0
1V	16.1	14.6	21.0
2V	20.2	18.6	25.5
3V	24.2	22.6	30.0
4V	30.2	28.6	37.0
5V	45.2	42.6	53.0

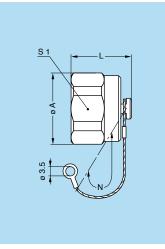
Mounting nuts torque


Component	Torque (Nm)									
Component	0V	1V	2V	3V	4V	5V				
Collet nut for Fee and Pee	0.7	0.8	2	3	5	8				
Mounting hex nut for sockets	7	9	11	14	19	24				
Coupling nut	5	7	9	12	17	22				

1N = 0.102 kg

Accessories

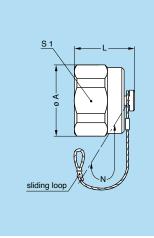
Plug caps (IP68 and resistance to hydrostatic pressure 30 bars)


David version base	Carrian	Dimensions (mm)						
Part number	er Series	Α	В	е	L	N ¹⁾	S1	
BFA.0V.100.●AZ	0V	17.2	6	M14x1.0	12.5	85	16	
BFA.1V.100.●AZ	1V	19.3	6	M16x1.0	15.5	85	18	
BFA.2V.100.●AZ	2V	23.5	6	M20x1.0	17.5	85	22	
BFA.3V.100.●AZ	3V	27.8	6	M24x1.0	22.0	120	26	
BFA.4V.100.●AZ	4V	34.3	10	M30x1.0	22.5	120	32	
BFA.5V.100.●AZ	5V	50.0	10	M45x1.5	27.0	120	47	

Note: $^{1)}$ the tolerance on this dimension is ± 5 mm.

- Body material: $\bullet = N$, nickel-plated brass (Ni 3 μ m) $\bullet = S$, stainless steel
- Lanyard material: Stainless steel
- Crimp ferrule material: Nickel-plated brass

Blanking caps for fixed sockets (This cap is only IP68 when installed)

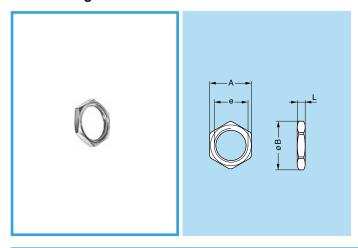

Part number	Series	Dimensions (mm)					
Fait number		Α	L	N ¹⁾	S1		
BRE.0V.200.●AV	0V	17.2	13.7	85	16		
BRE.1V.200.●AV	1V	19.3	13.7	85	18		
BRE.2V.200.●AV	2V	23.5	14.7	85	22		
BRE.3V.200.●AV	3V	27.8	14.7	120	26		
BRE.4V.200.●AV	4V	34.3	14.7	120	32		
BRE.5V.200.●AV	5V	50.0	16.2	120	47		

Note: 1) the tolerance on this dimension is \pm 5 mm.

- Body material: \bullet = N, nickel-plated brass (Ni 3 μ m) \bullet = S, stainless steel Lanyard material: Stainless steel
- Crimp ferrule material: Nickel-plated brass O-ring: FPM (Viton®)

BRF Blanking caps for free sockets (This cap is only IP68 when installed)

Part number	Series	Dimensions (mm)					
		Α	L	N ¹⁾	S1		
BRF.0V.200.●AV	0V	17.2	13.7	85	16		
BRF.1V.200.●AV	1V	19.3	13.7	85	18		
BRF.2V.200.●AV	2V	23.5	14.7	85	22		
BRF.3V.200.●AV	3V	27.8	14.7	120	26		
BRF.4V.200.●AV	4V	34.3	14.7	120	32		
BRF.5V.200.●AV	5V	50.0	16.2	120	47		

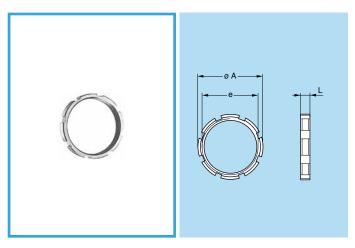

Note: 1) the tolerance on this dimension is ± 5 mm.

- Body material: = N, nickel-plated brass (Ni 3μm)
- S, stainless steel

 Lanyard material: Stainless steel
- Crimp ferrule material: Nickel-plated brass O-ring: FPM (Viton®)

GEA Hexagonal nuts

Part number	Series	Dimensions (mm)					
Part number	Series	Α	В	е	L		
GEA.0E.240.LN	0V	17	19.2	M14 x 1.00	2.5		
GEA.1E.240.LN	1V	19	21.5	M16 x 1.00	3.0		
GEA.2E.240.LN	2V	24	27.0	M20 x 1.00	4.0		
GEA.3E.240.LN	3V	30	34.0	M24 x 1.00	5.0		
GEA.4E.240.LN	4V	36	40.5	M30 x 1.00	7.0		

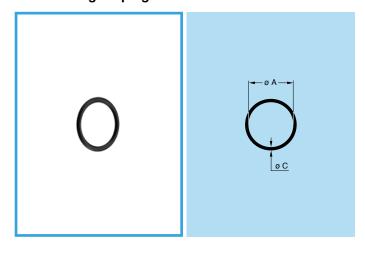

Note: to order this part separately, use the above part numbers. The last letters «LN» of the part number refer to the nut material and treatment. If a nut in stainless steel is desired, replace the last letters of the part number by «AZ».

- Material:

 Nickel-plated brass (3 μm)

 Stainless steel

GEB Round nuts


Part number	Series	Dimensions (mm)			
	Series	Α	е	L	
GEB.5E.240.LN	5V	54	M45 X 1.5	8.0	

Note: to order this part separately, use the above part numbers. The last letters «LN» of the part number refer to the nut material and treatment. If a nut in stainless steel is desired, replace the last letters of the part number by «AZ».

- Material:

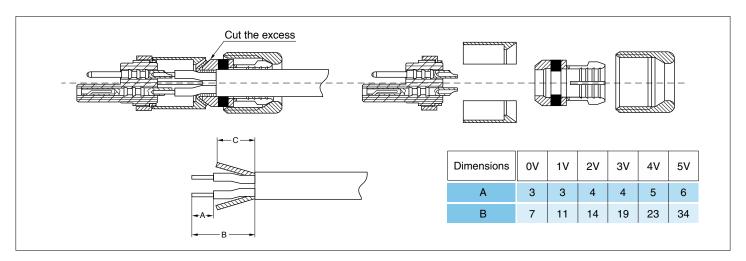
 Nickel-plated brass (3 μm)
 Stainless steel

GDA O-ring for plug

Part number	Series	Dim. (mm)		
Fait Humber	Series	Α	С	
GDA.99.080.100VK	0V	8.0	1.0	
GDA.99.100.100VK	1V	10.0	1.0	
GDA.99.130.150VK	2V	13.0	1.5	
GDA.99.165.150VK	3V	16.5	1.5	
GDA.99.210.200VK	4V	21.0	2.0	
GDA.99.330.250VK	5V	33.0	2.5	

Material: FPM (Viton®)

Cable assembly


Assembly instructions

In order to ensure the sealing of plugs and sockets on the cable side, it is imperatively necessary to complete their assembly by realizing it with an adapted technique.

We recommend the fitting of an heatshrink boot with inner melting coating of type ATUM (manufactured by the RAYCHEM company) or similar.

This heatshrink boot is not provided with the connector.

For multiconductors cables, the assembly instructions are the followings:

- 1) Preparation and stripping of cable (see above).
- 2) Slide the heatshrink boot over the cable; types and dimensions to have are:

Series	0V	1V	2V	3V	4V	5V
Type of heatshrink boot	12/3-0	12/3-0	19/6-0	19/6-0	24/6-0	40/13-0
Length of the boot	30	35	40	45	50	65
Oversize collet	-	16/4-0	19/6-0	24/8-0	40/13-0	-
Length of the boot for oversize collet	-	-	70	_	_	-

- 3) After having soldered the conductors on the contacts of the plug/socket insulator, bring the earthing cone against the centre-piece. Cut the excess of screen.
- 4) Locate the insulator, the centre-piece, the earthing cone, the gland, the compression ring and the collet in the plug/socket shell.
- 5) Screw the collet nut at the recommended torque value.
- 6) Remove all grease left on plug/socket shells with acetone.
- 7) Place the heatshrink boot of the correct dimensions onto the rear end of the plug/socket against the coupling nut.
- 8) Heat the heatshrink boot until the melting coating totally melts and adheres perfectly onto the cable jacket.

19

Product safety notice

PLEASE READ AND FOLLOW ALL INSTUCTIONS CAREFULLY AND CONSULT ALL RELEVENT NATIONAL AND INTERNATIONAL SAFETY REGULATIONS FOR YOUR APPLICATION. IMPROPER HANDLING, CABLE ASSEMBLY, OR WRONG USE OF CONNECTORS CAN RESULT IN HAZARDOUS SITUATIONS.

1. SHOCK AND FIRE HAZARD

Incorrect wiring, the use of damaged components, presence of foreign objects (such as metal debris), and / or residue (such as cleaning fluids), can result in short circuits, overheating, and / or risk of electric shock. Mated components should never be disconnected while live as this may result in an exposed electric arc and local overheating, resulting in possible damage to components.

2. HANDLING

Connectors and their components should be visually inspected for damage prior to installation and assembly. Suspect components should be rejected or returned to the factory for verification.

Connector assembly and installation should only be carried out by properly trained personnel. Proper tools must be used

during installation and / or assembly in order to obtain safe and reliable performance.

3. USE

Connectors with exposed contacts should never be live (or on the current supply side of a circuit). Under general conditions voltages above 30 VAC and 42 VDC are considered hazardous and proper measures should be taken to eliminate all risk of transmission of such voltages to any exposed metal part of the connector.

4. TEST AND OPERATING VOLTAGES

The maximum admissible operating voltage depends upon the national or international standards in force for the application in question. Air and creepage distances impact the operating voltage; reference values are indicated in the catalog however these may be influenced by PC board design and / or wiring harnesses.

The test voltage indicated in the catalog is 75% of the mean breakdown voltage; the test is applied at 500 V/s and the test duration is 1 minute.

5. CE MARKING CE

CE marking (€ means that the appliance or equipment bearing it complies with the protection requirements of one or several European safety directives.

CE marking (applies to complete products or equipment, but not to electromechanical components, such as connectors.

6. PRODUCT IMPROVEMENTS

The LEMO Group reserves the right to modify and improve to our products or specifications without providing prior notification.

MARNING (Prop 65 State of California)

Proposition 65 requires businesses to provide warnings to Californians about significant exposures to chemicals that cause cancer, birth defects or other reproductive harm. LEMO products are exempt from proposition 65 warnings because they are manufactured, marketed, and sold solely for commercial and industrial use. For further information, please visit https://www.lemo.com/quality/LEMO-Prop-65-compliance-declaration.pdf.

Disclaimers

LEMO works constantly to improve the quality of its products; the information and illustrations figuring in this document may therefore vary and are not binding. In any case, LEMO makes no specific warranty of merchantability, fitness for a particular purpose, third party components as such or included in assembly, non-infringement, title, accuracy, completeness, or security. The user is fully responsible for his products and applications using LEMO component.

In no event shall LEMO, its affiliates, officers, agents or employees be liable for any incidental, indirect, special or consequential damages in connection with the products or services provided by LEMO, including (without limitation) loss of profits or revenues, interruption of business, loss of use of the products or any associated equipment, materials, components or products, damages to associated equipment or in combination with other components, materials.

Reproduction of significant portions of LEMO information in LEMO data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. LEMO is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

No reproduction or use without express permission of editorial or pictorial content, in any manner. LEMO SA reserves the right to modify and improve specifications, at all times, without any notification.

